

FRP成形用機器

・正しく知り、適切なご判断を。

多くの材料では、各メーカーから同等品が供給されており、 商品価格の差がそのまま生産コスト差=優位性となる場合 もありますが、FRP 成形機器は各メーカーで独自の技術ノウ ハウを採用しており、価格差から生産上のメリットを判断す ることは難しいものです。また同価格であっても仕様や機能 性に大きな相違があることが普通であるため、実際の用途/ 目的に適合した仕様で見積を取ることが重要です。

本レポートは、各目的ごとの FRP 成形機械を紹介し、適切 な購買選択についてご理解頂くことを目的としています。

Aplicator: MIPG-24/HV (多色ゲルコート機)

<機械構成・仕様>

·FRP 成形機器の仕組/共通要素

- ◇ スプレー、注入等を問わず、『樹脂と硬化剤を混合して吐出する』という基本的な構造は同じです。
 - ※ 約 0.5~2.0 部という微量な硬化剤を正確に混合吐出できるのは、FRP に特化した成形機器だけです。
- ◇ FRP 成形機器の性能を判断する指標として、樹脂吐出量(分あたり)、ポンプ比(加圧倍率)などがあります。
 - ※ ポンプ比は、エアー・モーターと樹脂ポンプのシリンダー面積比などによって決まります。
 - 11:1 ポンプとは、エアー供給圧 1 に対し、樹脂が 11 の圧力で吐出されるものです。
- ◇ 樹脂と硬化剤の混合方式にもいくつかのパターンがあり、それぞれの長所・短所を知っておく必要があります。

仕様		混合方式	メリット	デメリット
内部混合	本体混合	ポンプ直後の スタティック・ミキサ 一で混合	・混合液の通過ラインが長いため、 より完全に混合できる・ガンに接続するホースが少なく、 取り回しが容易	・使用後にホース全体を洗浄するため、 材料の歩留まりが悪い
	ガン内部	ガン内部の ミキサーで混合	・材料の歩留まりが良い	・ガンに接続するホースが多く、重くなる ※かつては混合不良が問題となっていました が、現在では十分に改善されており、この方 式が主流になっています
外部混合		樹脂と硬化剤を 個別にスプレーし、 空中で混合する	・使用後の洗浄必要部分が非常に 少なく、メンテナンス性に優れる ・材料の歩留まりが良い	・混合ムラによる硬化不良の発生・硬化剤が飛散し、危険性や臭気に難あり

スタティック・ミキサー ・・・ パイプの中にたくさんのブレードがあり、材料がその中を通り抜けながら混合されるもの。

温量 レポート < ㈱GRP ジャパン 2014 年 3 月 28 日発行> Vol. 5

◇ ポンプ、スプレー・ガンは下記のような種類があります。(抜粋)

※GRP ジャパンで取り扱うスプレー機では、プランジャー式ポンプとエアーレス・スプレー仕様を基本としています。

パーツ		種類	模式図(例)	特徵
ポンプ	圧送式	プランジャー式		・高圧移送に適している
		ダイヤフラム式		・材料に機械油等が混入しない
		加圧タンク式		・連続的な材料供給ができない
	非圧送式	エアー・スプレー		・高圧空気噴射で真空を作り、材料を吸い上げる ・カップガンがこの方式
ガン	エアーレス			・高圧材料を小さな穴から噴射させて霧化・材料に空気が混ざらず、ピンホール発生を軽減
	エアーアシスト			・圧送材料と圧縮空気を混合して霧化 ・材料の粒子をより小さくすることができる

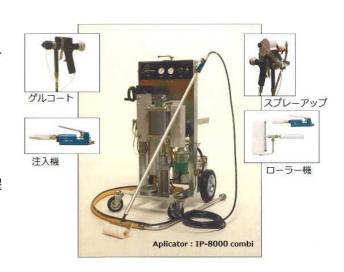
〔模式図凡例〕 材料 ■

〔備考〕

- ・エアーアシストガン模式図内、外側のエアーは噴射パターン調整用です。仕様により装備しない場合があります。
- ・エアーレスガンにも噴射パターン調整エアーを装備するものがあります。

オープン・モールド法の改善: 樹脂スプレー、ローラーマシン、ゲルコート機、パテ機・・・・

ハンドレイアップ成形に代表されるオープン・モールド法に機器を取り入れることで、飛躍的な作業改善が実現できます。 【メリット】省力化、作業時間短縮、環境対応、材料歩留まり改善、樹脂/硬化剤の混合比率安定化=硬化時間の安定化

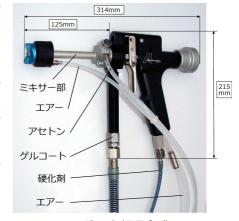

<樹脂スプレー>

樹脂と硬化剤を定量混合し、型にセットした強化材などに吹き 付けて含浸させるもので、脱泡作業を別途行います。

ポンプ比は比較的低く設定されています。(11:1、18:1 など)

〈ローラーマシン〉

樹脂と硬化剤の混合液がローラーから浸出し、作業効率を飛躍的に向上させます。



くゲルコート機>

ゲルコートは樹脂に揺変剤(タレ止め剤)などが混合されているため高粘度であり、吹き付け量も比較的少ないため、ポンプ比が高く、吐出量は少なめに設定されています。(24:1、22:1 など)

しかし、通常のゲルコートであれば、吐出量を基準に選択するのもひとつの方法でしょう。たいていの機械では、本体が共通でガン部のみ交換し、用途を変更して使用できるようになっています。(上写真:ポンプ比は 18:1)

また 1 台で複数のゲルコート用ポンプを装備し、簡易な操作でゲルコート色を切り替えながら並行作業できる多色ゲルコート機もラインナップされています。 (当レポート冒頭写真)

Aplicator: ガン内部混合式 ゲルコート・ガン

く樹脂ステーション>

樹脂と硬化剤を**正確に計量し、混合吐出**します。任意の容器に取った後は通常のハンドレイアップ法と同じく、含浸および脱泡作業を行います。

くスプレー・アップ機>

ガラス・ロービングをカットしながら、樹脂/硬化剤混合液と一緒に吹き付けることで、チョップド・ストランド・マットなどを敷く手間を省きます。通常はブーム(アーム)を装備し、ロービングを通すロービング・ガイドを必要とします。

クローズド・モールド法の発展: RTM、VaRTM、ホットプレス、オートクレーブ成形・・・・

<注入機> RTM = Resin Transfer Molding VaRTM = Vacuum assisted RTM

オス/メス型の一方に強化材をセットし、もう一方の型を合わせて型締(固定)したのち、間隙に樹脂と硬化剤の混合液を注入する成形方法です。硬化まで一定の圧力をかけたまま維持することで、成形品の厚み均一性などの寸法精度を高めることができます。

また両面がきれいな製品に仕上がることも、オープン・モールド法と異なる、大きな利点のひとつです。

より発展した成形技術として、簡易型とフィルム等を使用し、真空圧によって樹脂を吸入する VaRTM(バータム) 成形があります。少中量生産に向いていますが、高圧力をかけることができないため、樹脂をムラなく行き渡らせることが最大の課題であり、樹脂注入口の場所や注入順序を調整することが必要となります。

Aplicator: RI-15 (簡易型RTM機)

このほか、熱した型で樹脂コンパウンドを挟み込むホットプレス成型や、高温高圧の炉で硬化させるオートクレーブ成形などの方法があります。これらクローズド・モールド法は作業場への溶剤揮発を低減させ、環境改善を実現するものとしても注目されています。

<使用材料>

クローズド・モールド法は、オープン・モールド法とは異なる特殊 な材料を使用します。

【樹脂】・全体に行き渡るように粘度の低いもの

・樹脂タレの心配がないので揺変度をつけない

【強化材】・フローメディアを挟み込んだもの

・樹脂の流圧に耐える縫合型強化材、連続マット等

Aplicator: VRI515(真空射出成型機)

※詳細は多岐にわたるため、別途の GRP レポートとしてご案内致します。

その他


<パテ機>

(36:1、23:1 など) またパテを効率的に吸入できるよう、ドラム 缶内部にポンプを押し付ける構造になっていることが特徴です。 アプリケータ社の <u>IPP-8000</u> は、マイクロバルーン入りのパテに も対応しています。特殊な構造を持つポンプで樹脂を掻き込み、 マイクロバルーンを壊さずに混合吐出できるため、効果的な製 品の軽量化を実現します。

<フェノール、エポキシ用成形機器>

腐食に耐える素材の部品が使用されており、樹脂/硬化剤混合 比率も不飽和ポリエステル樹脂と大きく異なります。

Aplicator: IPP-8000/T200(ドラム缶用)

◇本レポートで紹介する FRP 成形機器は、下記の各部位から構成されています。

超高粘度樹脂の使用を目的としているため、ポンプ比が非常に高く設定されています。

部位		備考	
動力	エアー・モーター	電源不要の防爆対応	
		※出力 6bar(5.92 気圧)、500 リットル/分程度以上の	
		エアー・コンプレッサーが必要です。	
ポンプ	樹脂ポンプ	使用材料に応じ、仕様は様々	
	硬化剤スレーブ・ポンプ	・エアー・モーターや樹脂ポンプに連動して稼動	
		・ライン詰まり等が起きた際にホースの破裂を防止する安全装置	
		(セーフティ・バルブ)を標準装備	
	洗浄用アセトン・ポンプ	・フラッシュ式(一回ごとに一定量のアセトンを吐出) 例:アプリケータ社	
		・バルブ式(手動でバルブを開き、任意の量を吐出) 例:GS 社	
ガン等	ゲルコート・ガン	・FRP 用は全て圧送式なのでエアレス・スプレーだが、	
	スプレー・ガン(樹脂スプレー)	スプレー・パターン調整にエアー・アシストを使用するタイプもある	
		・スプレーの開閉にエアー・シリンダーを使用するものがある	
	スプレー・ガン	・ガラス繊維をカットするロービング・カッターが搭載されている	
	(スプレー・アップ機)		
	ローラー	・樹脂と硬化剤の混合液がローラー内部から浸出する仕組み	
	注入ガン	・クローズド・モールド法で使用される	
その他	(オプション)	・ヒーター(樹脂粘度を調整)	
		・硬化剤アラーム(硬化剤の流量や圧力を監視)	
		・エアー・レギュレーター(供給エアー圧を調整)	
		・ストロークカウンター(いわゆるポンプの『空打ち』を監視)	

GS: X2004CC (スプレーアップ・ガン)

GS: SUPERFLOW Chopper (スプレーアップ機)

・弊社取扱メーカー

現在日本国内で流通している輸入機械の多くはメーカー統合を繰り返しながら数を減らしていますが、弊社では古くから FRP 成形機械の販売を行っている、信頼のおけるメーカーを取り扱っています。

社名	所在地	特長
APLICATOR SYSTEM AB	スウェーデン	・コントロールパネルを搭載し、操作を一括管理
(アプリケータ社)		・標準仕様で多色ゲルコーターをラインナップ
		・造船関係を中心に、世界で安定した実績がある
GS Manufacturing Group	アメリカ	・各ライン、バルブ類の配置がシンプル
(GS 社)		・メンテナンス性能に優れる
		・セミオーダー方式の採用により、ニーズにぴったりの装置を構築

【お問い合わせ】

株式会社 GRP ジャパン 〒651-0087 神戸市中央区御幸通4-2-15三宮米本ビル 3F

Tel: 078-265-1671 / Fax: 078-265-1676